I nequality

The AtKinson index

Denote the Atkinson index of inequality for the group k by $\mathrm{I}(\mathrm{k} ; \varepsilon)$. It can be expressed as follows:

$$
\hat{\mathrm{I}}(\mathrm{k} ; \varepsilon)=\frac{\hat{\mu}(\mathrm{k})-\hat{\xi}(\mathrm{k} ; \varepsilon)}{\hat{\mu}(\mathrm{k})} \text { where } \hat{\mu}(\mathrm{k})=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{sw}_{\mathrm{i}}^{\mathrm{k}} y_{\mathrm{i}}}{\sum_{\mathrm{i}=1}^{\mathrm{n}} \operatorname{sw}_{\mathrm{i}}^{\mathrm{k}}}
$$

The Atkinson index of social welfare is as follows:

$$
\hat{\xi}(k ; \varepsilon)= \begin{cases}{\left[\frac{1}{\sum_{i=1}^{n} \operatorname{sw}_{i}^{k}} \sum_{i=1}^{n} \operatorname{sw}_{i}^{k}\left(y_{i}\right)^{1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}}} & \rightarrow \text { if } \varepsilon \neq 1 \text { and } \varepsilon \geq 0 \\ \operatorname{Exp}\left[\frac{1}{\sum_{i=1}^{n} \operatorname{sw}_{i}^{k}} \sum_{i=1}^{n} \operatorname{sw}_{i}^{k} \ln \left(y_{i}\right)\right] & \rightarrow \varepsilon=1\end{cases}
$$

If you wish to compute the Atkinson index of inequality, follow these steps:

- From the main menu, choose "Inequality \Rightarrow Atkinson index".
- Choose the different vectors and values of parameters.

Among the buttons, you find the following commands:
COMPUTE: to compute the Atkinson index.
GRAPH: to draw the value of the index according to the parameter ρ.

S-Gini Index

Denoting the S-Gini index of inequality for the group k by $\mathrm{I}(\mathrm{k} ; \rho)$, and the S-Gini social welfare index by $\xi(k ; \rho)$, we have:

$$
\hat{\mathrm{I}}(\mathrm{k} ; \varepsilon)=\frac{\hat{\mu}(\mathrm{k})-\hat{\xi}(\mathrm{k} ; \rho)}{\hat{\mu}(\mathrm{k})}
$$

where

$$
\hat{\xi}(\mathrm{k} ; \rho)=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\frac{\left(\mathrm{~V}_{\mathrm{i}}\right)^{\rho}-\left(\mathrm{V}_{\mathrm{i}+1}\right)^{\rho}}{\left[\mathrm{V}_{1}\right]^{\rho}}\right] \mathrm{y}_{\mathrm{i}} \quad \text { and } \quad \mathrm{V}_{\mathrm{i}}=\sum_{\mathrm{h}=\mathrm{i}}^{\mathrm{n}} \operatorname{sw}_{\mathrm{h}}^{\mathrm{k}} \text { and } \mathrm{y}_{1 \geq y_{2} \geq} \cdots \mathrm{y}_{\mathrm{n}-1 \geq} \mathrm{y}_{\mathrm{n}} \geq
$$

REMARK: To compute the ordinary Gini index, the parameter ρ should be equals to 2 .
If you wish to compute the S-Gini index of inequality, follow these steps:

- From the main menu, choose "Inequality \Rightarrow S-Gini index".
- Choose the different vectors and values of parameters.

Among the buttons, you find the following commands:
COMPUTE: to compute the Atkinson index.
GRAPH: to draw the value of the index according to the parameter ρ.

The Atkinson-Gini index

Denoting the Atkinson-Gini index of inequality for the group k by $I(k ; \varepsilon, \rho)$, and the Atkinson-S-Gini social welfare index by $\xi(k ; \varepsilon, \rho)$, we have:

$$
\hat{\mathrm{I}}(\mathrm{k} ; \varepsilon, \rho)=\frac{\hat{\mu}(\mathrm{k})-\hat{\xi}(\mathrm{k} ; \varepsilon, \rho)}{\hat{\mu}(\mathrm{k})}
$$

where

$$
\hat{\xi}(\mathrm{k} ; \varepsilon, \rho)=\left\{\begin{array}{l}
{\left[\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\frac{\left(\mathrm{~V}_{\mathrm{i}}\right)^{\rho}-\left(\mathrm{V}_{\mathrm{i}+1}\right)^{\rho}}{\left(\mathrm{V}_{1}\right)^{\rho}}\right]\left(\mathrm{y}_{\mathrm{i}}\right)^{1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}} \rightarrow \varepsilon \neq 1, \varepsilon \geq 0 \text { and } \rho \geq 1} \\
\operatorname{Exp}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\frac{\left(\mathrm{~V}_{\mathrm{i}}\right)^{\rho}-\left(\mathrm{V}_{\mathrm{i}+1}\right)^{\rho}}{\left(\mathrm{V}_{1}\right)^{\rho}}\right] \ln \left(\mathrm{y}_{\mathrm{i}}\right)\right] \rightarrow \varepsilon=1 \text { and } \rho \geq 1
\end{array}\right.
$$

and

$$
\mathrm{V}_{\mathrm{i}}=\sum_{\mathrm{h}=\mathrm{i}}^{\mathrm{n}} \mathrm{sw}_{\mathrm{h}}^{\mathrm{k}}
$$

and

$$
y_{1} \geq y_{2} \geq \cdots y_{n-1 \geq} y_{n} \geq
$$

If you wish to compute the Atkinson-Gini index of inequality, follow these steps:

- From the main menu, choose "Inequality \Rightarrow Atkinson-Gini index".
- Choose the different vectors and values of parameters.

Among the buttons, you find the following commands:
COMPUTE: to compute the Atkinson-Gini index.

The Generalised Entropy index

The Generalised Entropy Index of inequality for the group k is as follows:

$$
\hat{I}(k ; \theta)= \begin{cases}\frac{1}{\theta(\theta-1) \sum_{i=1}^{n} \operatorname{sw}_{i}^{k}} \sum_{i} \operatorname{sw}_{i}^{k}\left[\left(\frac{y_{i}}{\hat{\mu}(k)}\right)^{\theta}-1\right] & \text { if } \theta \neq 0,1 \\ \frac{1}{\sum_{i=1}^{n} \operatorname{sw}_{i}^{k}} \sum_{i} \operatorname{sw}_{i}^{k} \log \left(\frac{\hat{\mu}(k)}{y_{i}}\right) & \text { if } \theta=0 \\ \frac{1}{\sum_{i=1}^{n} \operatorname{sw}_{i}^{k}} \sum_{i} \frac{\operatorname{sw}_{i}^{k} y_{i}}{\hat{\mu}(k)} \log \left(\frac{y_{i}}{\hat{\mu}(k)}\right) & \text { if } \theta=1\end{cases}
$$

If you wish to compute the Generalised Entropy Index of inequality, follow these steps:

- From the main menu, choose "Inequality \Rightarrow Entropy Index".
- Choose the different vectors and values of parameters.

Among the buttons, you find the following commands:
COMPUTE: to compute the Generalised Entropy index.
GRAPH: to draw the value of the index according to the parameter θ.

The Quantile Ratio and the I nterQuanti le Ratio I ndex

Denote the Quantile Ratio for group k by $\mathrm{QR}\left(\mathrm{k} ; \mathrm{p}_{1}, \mathrm{p}_{2}\right)$; it can be expressed as follows:

$$
\widehat{\mathrm{QR}}\left(\mathrm{k} ; \mathrm{p}_{1}, \mathrm{p}_{2}\right)=\frac{\hat{\mathrm{Q}}\left(\mathrm{k}, \mathrm{p}_{1}\right)}{\hat{\mathrm{Q}}\left(\mathrm{k}, \mathrm{p}_{2}\right)}
$$

where $\mathrm{Q}(\mathrm{k}, \mathrm{p})$ denote the p -quantile of group k .
The Interquantile Ratio $\operatorname{IQR}\left(\mathrm{k} ; \mathrm{p}_{1}, \mathrm{p}_{2}\right)$ is defined as:

$$
\widehat{\mathrm{IQR}}\left(\mathrm{k} ; \mathrm{p}_{1}, \mathrm{p}_{2}\right)=\frac{\hat{\mathrm{Q}}\left(\mathrm{k}, \mathrm{p}_{1}\right)-\hat{\mathrm{Q}}\left(\mathrm{k}, \mathrm{p}_{2}\right)}{\hat{\mu}(\mathrm{k})}
$$

REMARK: The instructions for the Interquantile Ratio are similar to those for the Quantile Ratio.

If you wish to compute the Quantile Ratio Index of inequality, follow these steps:

- From the main menu, choose "Inequality \Rightarrow Quantile Ratio".
- Choose the different vectors and values of parameters. Parameters
p_{1} : Percentile for numerator
p_{2} : Percentile for denominator
Among the buttons, you find the following commands:
COMPUTE: to compute the Quantile Ratio index.

The Coefficient of Variation IndeX

Denote the Coefficient of Variation index of inequality for the group k by CV. It can be expressed as follows:

$$
\widehat{\mathrm{CV}}(\mathrm{k})=\left[\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{sw}_{\mathrm{i}}^{\mathrm{k}} \mathrm{y}_{\mathrm{i}}^{2} / \sum_{\mathrm{i}=1}^{\mathrm{n}} s w_{\mathrm{i}}^{\mathrm{k}}-\hat{\mu}(\mathrm{k})^{2}}{\hat{\mu}(\mathrm{k})^{2}}\right]^{\frac{1}{2}}
$$

If you wish to compute the Coefficient of Variation Index of inequality, follow these steps:

- From the main menu, choose "Inequality \Rightarrow Coefficient of Variation".
- Choose the different vectors and values of parameters.

Among the buttons, you find the following commands:
COMPUTE: to compute the Coefficient of Variation index.

The Logarithmic Vari ance I ndex

Denote the Logarithmic Variance index of inequality for the group k by LV; it can be expressed as follows:

$$
\widehat{\operatorname{LV}}(\mathrm{k})=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \operatorname{sw}_{\mathrm{i}}^{\mathrm{k}}\left(\log \left(\mathrm{y}_{\mathrm{i}}\right)-\log (\hat{\mu}(\mathrm{k}))\right)^{2}}{\sum_{\mathrm{i}=1}^{\mathrm{n}} \operatorname{sw}_{\mathrm{i}}^{\mathrm{k}}}
$$

If you wish to compute the Logarithmic Variance Index of inequality, follow these steps:

- From the main menu, choose "Inequality \Rightarrow Logarithmic Variance".
- Choose the different vectors and values of parameters.

Among the buttons, you find the following commands:
COMPUTE: to compute the Logarithmic Variance index.

The Vari ance of Logarithms

Denote the Variance of Logarithms index of inequality for group k by VL. It can be expressed as follows:

$$
\widehat{\mathrm{VL}}(\mathrm{k})=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \operatorname{sw}_{\mathrm{i}}^{\mathrm{k}}\left(\log \left(\mathrm{y}_{\mathrm{i}}\right)-\widehat{\operatorname{lmu}}(\mathrm{k})\right)^{2}}{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{sw}_{\mathrm{i}}^{\mathrm{k}}} \text { where } \widehat{\operatorname{lmu}}(\mathrm{k})=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \operatorname{sw}_{\mathrm{i}}^{\mathrm{k}} \log \left(y_{i}\right)}{\sum_{i=1}^{n} \mathrm{sw}_{i}^{k}}
$$

If you wish to compute the Variance of Logarithms Index of inequality, follow these steps:

- From the main menu, choose "Inequality \Rightarrow Variance of Logarithms".
- Choose the different vectors and values of parameters.

Among the buttons, you find the following commands:
COMPUTE: to compute the Variance of Logarithms index.

The Relative Mean Deviation Index

Denote the Relative Mean Deviation index of inequality for the group k by RMD. It can be expressed as follows:

$$
\widehat{\operatorname{RMD}}(\mathrm{k})=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{sw}_{\mathrm{i}}^{\mathrm{k}}\left|\left(\mathrm{y}_{\mathrm{i}} / \mu(\mathrm{k})\right)-1\right|}{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{sw}_{\mathrm{i}}^{\mathrm{k}}}
$$

If you wish to compute the Relative Mean Deviation Index of inequality, follow these steps:

- From the main menu, choose "Inequality \Rightarrow Relative Mean Deviation".
- Choose the different vectors and values of parameters.

Among the buttons, you find the following commands:
COMPUTE: to compute the Relative Mean Deviation index.

The Conditional Mean Ratio

Denote the Conditional Mean for group k by $\mu\left(\mathrm{k} ; \mathrm{p}_{1} ; \mathrm{p}_{2}\right)$, where p_{1} and p_{2} specify the percentile (p) range of those we wish to include in the computation of the conditional mean. These percentile values p are such that $\mathrm{p}_{1} \leq \mathrm{p} \leq \mathrm{p}_{2} . \mu\left(\mathrm{k} ; \mathrm{p}_{1} ; \mathrm{p}_{2}\right)$ is formally defined as:

$$
\hat{\mu}\left(\mathrm{k} ; \mathrm{p}_{1} ; \mathrm{p}_{2}\right)=\frac{\int_{\mathrm{p}_{1}}^{\mathrm{p}_{2}} \mathrm{Q}(\mathrm{k} ; \mathrm{p}) \mathrm{dp}}{\mathrm{p}_{2}-\mathrm{p}_{1}}
$$

and is the average income of those whose rank in the population is between p_{1} and p_{2}. The Conditional Mean Ratio for group k is then given by $\operatorname{CMR}\left(\mathrm{k}_{1}, \mathrm{k}_{2} ;, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{p}_{4}\right)$ and is defined as

$$
\operatorname{CMR}\left(\mathrm{k}_{1}, \mathrm{k}_{2} ; \mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4\right)=\frac{\mu\left(\mathrm{k}_{1} ; \mathrm{p}_{1} ; \mathrm{p}_{2}\right)}{\mu\left(\mathrm{k}_{2} ; \mathrm{p}_{3} ; \mathrm{p}_{4}\right)}
$$

If you wish to compute the Conditional Mean Ratio Index of inequality, follow these steps:

- From the main menu, choose "Inequality \Rightarrow Conditional Mean Ratio".
- Choose the different vectors and values of parameters.

Among the buttons, you find the following commands:
COMPUTE: to compute the Conditional Mean Ratio index.

The Share Ratio

Denote the Share Ratio for population domain k by $\operatorname{SR}(\mathrm{k} ; \mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4)$, where p 1 and p 2 are lower and upper percentiles that delimitate a first group and p3 and p4 are lower and upper percentiles that delimitate a second group. The Share Ratio is the ratio of the income share of the first group over the income share of the second group:

$$
\widehat{\mathrm{SR}}(\mathrm{k} ; \mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4)=\frac{\hat{\mathrm{L}}(\mathrm{p} 2)-\hat{\mathrm{L}}(\mathrm{p} 1)}{\hat{\mathrm{L}}(\mathrm{p} 4)-\hat{\mathrm{L}}(\mathrm{p} 3)}
$$

If you wish to compute the Share Ratio Index of inequality, follow these steps:

- From the main menu, choose "Inequality \Rightarrow Share Ratio".
- Choose the different vectors and values of parameters.

Among the buttons, you find the following commands:
COMPUTE: to compute the Share Ratio index.

I ncome-Component Proportional Growth

Change per 100 \% Option

Let J components y^{j} add up to y, that is:
$y_{i}=\sum_{j=1}^{\mathrm{J}} \mathrm{y}_{\mathrm{i}}^{\mathrm{j}}$
The S-Gini index of inequality can be expressed as follows:

$$
\hat{\mathrm{I}}(\rho)=\sum_{\mathrm{j}=1}^{\mathrm{J}} \frac{\hat{\mu}_{\mathrm{j}}}{\hat{\mu}_{\mathrm{y}}} \widehat{\mathrm{IC}}_{\mathrm{j}}(\rho)
$$

The contribution of the $j^{\text {th }}$ component to total inequality in y is $\frac{\mu_{j}}{\mu_{y}} \operatorname{IC}_{j}(\rho)$, where $\operatorname{IC}_{j}(\rho)$ is the coefficient of concentration of the $j^{\text {th }}$ component and μ_{j} is the mean of that component.

The impact on the S-Gini index of growth in y coming exclusively from growth in the $j^{\text {th }}$ component is:

$$
\frac{\frac{\partial \mathrm{I}(\rho)}{\partial \mathrm{y}^{\mathrm{j}}}}{\frac{\partial \mu_{\mathrm{y}}}{\partial \mathrm{y}^{\mathrm{j}}} / \mu_{\mathrm{y}}}=\widehat{\mathrm{I}}_{\mathrm{j}}(\rho)-\hat{\mathrm{I}}(\rho)
$$

When multiplied by 1%, this says for instance by how much (in absolute, not in percentage, terms) the Gini index will change if total income increases by 1% when that growth is entirely due to growth from the $\mathrm{j}^{\text {th }}$ component.
If you wish to compute this statistics, follow these steps:

- From the main menu, choose "Inequality \Rightarrow Impact of Component Growth".
- Choose the different vectors and values of parameters.

Vectors
y : Variable of interest.
y^{j} : Component

Among the buttons, you find the following commands:
COMPUTE: to compute the impact on the S-Gini index of growth in y coming exclusively from growth in the $\mathrm{j}^{\text {th }}$ component.

ELASTICITY WITH RESPECT TO COMPONENT OPTI ON

The Gini $j^{\text {th }}$-component elasticity is given by:

$$
\left(\frac{\frac{\partial \mathrm{I}(\rho)}{\partial \mathrm{y}^{\mathrm{j}}}}{\frac{\partial \mu_{\mathrm{y}}}{\partial \mathrm{y}^{\mathrm{j}}}}\right) /\left(\frac{\mathrm{I}(\rho)}{\mu_{\mathrm{y}}}\right)=\frac{\widehat{\mathrm{IC}}_{\mathrm{j}}(\rho)}{\hat{\mathrm{I}}(\rho)}-1
$$

This gives the elasticity of the Gini index with respect to total income, when the change in total income is entirely due to growth from the $\mathrm{j}^{\text {th }}$ component.

If you wish to compute this statistics, follow these steps:

- From the main menu, choose "Inequality \Rightarrow Gini Component Elasticity".
- Choose the different vectors and values of parameters.

Vectors
y : Variable of interest.
y^{j} : Component
Among the buttons, you find the following commands:
COMPUTE: to compute the Gini component elasticity.

