Poverty indices

DAD offers four possibilities for fixing the poverty line:

- 1- A deterministic poverty line set by the user.
- 2- A poverty line equal to a proportion "*l*" of the mean.
- 3- A poverty line equal to a proportion "m" of a quantile Q(p).
- 4- An estimated poverty line that is asymptotically normally distributed with a standard deviation specified by the user.

For the first possibility, just indicate the value of the deterministic poverty line in front of "**Poverty line**". For the other three possibilities, proceed as follows:

- Click on the button "Compute line".
- Choose one of the following three options:
- a) Proportion of mean: the proportion *l* should be entered.
- b) Proportion of quantile: enter the proportion m and then the quantile Q(p) by specifying the desired percentile p of the population.
- c) Estimated line: enter the estimate of the poverty line z and its standard deviation stdz.

THE FGT INDEX

The unnormalized Foster-Greer-Thorbecke poverty index FGT P(k; z; α) for the population subgroup k is as follows:

$$P(k;z;\alpha) = \frac{1}{\sum_{i=1}^{n} sw_{i}^{k}} \sum_{i=1}^{n} sw_{i}^{k} (z - y_{i})_{+}^{\alpha}$$

where z is the poverty line and $x_{+} = max(x,0)$. The normalized index is defined by:

$$\overline{P}(k;z;\alpha) = P(k;z;\alpha)/(z)^{0}$$

If you wish to compute the FGT index of poverty, follow these steps:

- From the main menu, choose "Poverty \Rightarrow FGT index".
- Choose the different vectors and values of parameters.

Among the buttons, you will find the following commands:

COMPUTE: to compute the FGT index. **GRAPH1:** to draw the value of the index according to the poverty line z. **GRAPH2:** to draw the value of $FGT^{\frac{1}{\alpha}}$ as a function of a range of parameter α - To compute the normalized index, choose that option in the window of inputs.

THE BOUNDED INCOME AND OVERLOAD INDICES

• Gap index:

The Gap index GI(k; z1; z2; α) for the population subgroup k is as follows:

$$GI(k; z1, z2; \alpha) = \frac{\sum_{i=1}^{n} sw_{i}^{k} (z2 - y_{i})^{\alpha} I(z1 \le y_{i} \le z2)}{\sum_{i=1}^{n} sw_{i}^{k}}$$

If the index is relative to the group of those with $z1 \le y_i \le z2$, we have:

$$GGI(k; z1, z2; \alpha) = \frac{\sum_{i=1}^{n} sw_{i}^{k} (z2 - y_{i})^{\alpha} I(z1 \le y_{i} \le z2)}{\sum_{i=1}^{n} sw_{i}^{k} I(z1 \le y_{i} \le z2)}$$

• Surplus index:

The Surplus index SI(k; z1; z2; α) for the population subgroup k is as follows:

$$SI(k; z1, z2; \alpha) = \frac{\sum_{i=1}^{n} sw_{i}^{k} (y_{i} - z1)^{\alpha} I(z1 \le y_{i} \le z2)}{\sum_{i=1}^{n} sw_{i}^{k}}$$

If the index is relative to the group of those with $z1 \le y_i \le z2$, we have:

$$GSI(k;z1,z2;\alpha) = \frac{\sum_{i=1}^{n} sw_i^k (y_i - z1)^{\alpha} I(z1 \le y_i \le z2)}{\sum_{i=1}^{n} sw_i^k I(z1 \le y_i \le z2)}$$

• Overload index:

The Overload Index $OLI(k, z, \alpha)$ for group k is as follows:

$$OLI(k, z, \alpha) = \frac{\widehat{GI}(k, z_1 = 0, z_2 = z, \alpha)}{\widehat{SI}(k, z_1 = z, z_2 = +\infty, \alpha)}$$

If you wish to compute these indices of poverty, follow these steps:

- From the main menu, choose "Poverty⇒ Bounded income index ".
- Choose the different vectors and values of parameters.

Parameters

z1 Lower boundz2 Upper boundz Poverty lineα alpha

Compulsory Compulsory Compulsory for OLI Compulsory

Among the buttons, you will find the following commands:

COMPUTE: to compute the selected index. GRAPH: to draw the value of the overload index as a function of a range of poverty lines z.

THE WATTS POVERTY INDEX

The Watts poverty index PW(k;z) for the population subgroup k is defined as:

$$PW(k;z) = -\frac{\sum_{i=1}^{n} sw_i^k (\log(y_i / z))_+}{\sum_{i=1}^{n} sw_i^k}$$

where z is the poverty line and $x_{+} = \max(x,0)$.

If you wish to compute the Watts index of poverty, follow these steps:

- From the main menu, choose "Poverty \Rightarrow Watts index".
- Choose the different vectors and values of parameters.

Among the buttons, you will find the following commands:

COMPUTE: to compute the Watts index.

GRAPH: to draw the value of the index according to the poverty line z.

THE S-GINI POVERTY INDEX

The S-Gini poverty index $P(k;z;\rho)$ for the population subgroup k is defined as:

$$P(k;z;\rho) = z - \sum_{i=1}^{n} \left[\frac{(V_i)^{\rho} - (V_{i+1})^{\rho}}{[V_1]^{\rho}} \right] (z - y_i)_+ \text{ and } V_i = \sum_{h=i}^{n} sw_h^k$$

where z is the poverty line and $x_{+} = max(x,0)$.

If you wish to compute the S-Gini poverty index, follow these steps:

- From the main menu, choose "Poverty \Rightarrow S-Gini index".
- Choose the different vectors and values of parameters. **Parameters**

Z	Poverty line
ρ	Rho

Compulsory Compulsory

Among the buttons, you will find the following commands:

COMPUTE: to compute the S-Gini poverty index. **GRAPH:** to draw the value of the index according to the poverty line z.

THE CLARK, HEMMING AND ULPH (CHU) POVERTY INDEX

The poverty index $P(k;z;\varepsilon)$ for the population subgroup k is defined as:

$$P(k;z,\varepsilon) = \begin{cases} z - \left(\frac{\sum\limits_{i=1}^{n} sw_{i}^{k} (y_{i}^{*})^{1-\varepsilon}}{\sum\limits_{i=1}^{n} sw_{i}^{k}}\right)^{1/(1-\varepsilon)} & \text{if } \varepsilon \neq 1 \text{ and } \varepsilon \ge 0\\ \\ z - exp\left(\frac{\sum\limits_{i=1}^{n} sw_{i}^{k} \ln y_{i}^{*}}{\sum\limits_{i=1}^{n} sw_{i}^{k}}\right) & \text{if } \varepsilon = 1 \end{cases}$$

where z is the poverty line and $y_i^* = \begin{cases} y_i & \text{if } y_i \le z \\ z & \text{otherwise} \end{cases}$

If you wish to compute the CHU poverty index of poverty, follow these steps:

- From the main menu, choose "Poverty \Rightarrow CHU index".
- Choose the different vectors and values of parameters. <u>Parameters</u>

z Poverty line

Compulsory

Among the buttons, you will find the following commands:

COMPUTE: to compute the CHU poverty index.

GRAPH: to draw the value of the index according to the poverty line z.

THE SEN INDEX

The Sen index of poverty $PS(k;z,\rho)$ for the population subgroup k is defined as:

$$PS = H\left[I + (1 - I)G^*\right]$$
$$H = \frac{\sum_{i=1}^{n} sw_i^k * I(y_i^k \le z)}{\sum_{i=1}^{n} sw_i^k}$$
$$q = \frac{\sum_{i=1}^{n} sw_i^k * I(z - y_i^k)_+}{\sum_{i=1}^{n} sw_i^k}$$

 G^* is the Gini index of inequality among the poor, z is the poverty line and $x_+ = max(x,0)$.

If you wish to compute the Sen poverty index, follow these steps:

- From the main menu, choose "Poverty \Rightarrow Sen index".
- Choose the different vectors and values of parameters. _ **Parameters** Z
 - Poverty line

Compulsory

Among the buttons, you will find the following commands:

COMPUTE: to compute the Sen poverty index.

GRAPH: to draw the value of the index according to the poverty line z.

THE BI-DIMENSIONAL FGT INDEX

The Foster-Greer-Thorbecke poverty index, $P_g(k; z; \alpha)$, for an indicator of well-being g and for a population subgroup k is as follows

$$P_{g}(k;z_{g};\alpha) = \frac{\sum_{i=1}^{n} sw_{i}^{k} (z_{g} - x_{g,i})_{+}^{\alpha}}{\sum_{i=1}^{n} sw_{i}^{k}}$$

where z^g is the poverty line for good g, $x_{g,i}$ is the gth component of household I and $t_+ = \max(t,0)$. The normalised index is defined by:

$$\overline{P}_{g}(k;z_{g};\alpha) = \overline{P}_{g}(k;z_{g};\alpha)/(z_{g})^{\alpha}$$

Union headcount

The union headcount, based on G dimensions or commodities, is equal to:

$$P(k; z_1, z_2, ...) = \frac{\sum_{i=1}^{n} sw_i^k \left(1 - \prod_{g=1}^{G} I(z_g < x_{g,i}) \right)}{\sum_{i=1}^{n} sw_i^k}$$

Intersection headcount

The intersection headcount, based on G dimensions or commodities, is equal to:

$$P(k;z_1,z_2,...) = \frac{\sum_{i=1}^{n} sw_i^k \prod_{g=1}^{G} I(z_g \ge x_{g,i})}{\sum_{i=1}^{n} sw_i^k}$$

Union sum of gaps

The union sum of gaps, using G dimensions or commodities, is equal to:

$$P(k;z_1, z_2, ...) = \frac{\sum_{i=1}^{n} sw_i^k \left(\sum_{g=1}^{G} (z_g - x_{g,i})_+\right)}{\sum_{i=1}^{n} sw_i^k}$$

Intersection sum of gaps

The intersection sum of gaps, using G dimensions or commodities, is equal to:

$$\hat{P}(k;z_1, z_2, ...) = \frac{\sum_{i=1}^{n} sw_i^k \left(\sum_{g=1}^{G} (z_g - x_{g,i})_+ * \prod_{i=1}^{G} I(z_g \ge x_{g,i})\right)}{\sum_{i=1}^{n} sw_i^k}$$

Intersection product of gaps

The intersection product of gaps, using G dimensions or commodities, is equal to:

$$P(k;z^{1},z^{2},...;\alpha_{1},\alpha_{2},...) = \frac{\sum_{i=1}^{n} sw_{i}^{k} \left(\prod_{g=1}^{G} (z_{g} - x_{g,i})^{\alpha_{g}} + \prod_{i=1}^{G} I(z_{g} \ge x_{g,i}) \right)}{\sum_{\substack{i=1\\ i=1}^{n} sw_{i}^{k}}}$$

Graphical illustration for two commodities

If you wish to compute bidimensional poverty indices, follow these steps:

- From the main menu, choose "Poverty \Rightarrow Bidimensional index".
- Choose the different vectors and values of parameters.

Parameters

\mathbf{Z}_{1}	Poverty line 1	Compulsory
Z ₂	Poverty line 2	Compulsory
$\bar{\alpha_1}$	alpha1	Compulsory
α_2	alpha2	Compulsory

Among the buttons, you will find the following commands:

COMPUTE: to compute bidimensional poverty indices.

Results of this application are:

- FGT index for commodity 1: corresponding to areas (I+II) in the graphical illustration.
- FGT index for commodity 2: corresponding to areas (II+III) in the graphical illustration.
- FGT index for the two commodities (Union approach): corresponding to areas (I+II+III) in the graphical illustration.
- FGT index for the two commodities (Intersection approach): corresponding to areas (II) in the graphical illustration.

Example: Food and non-food expenditures per day in F CFA (Cameroon 1996). Food poverty line evaluated at 256 F CFA and non-food poverty line evaluated at 117 F CFA.

IMPACT OF A PRICE CHANGE ON THE FGT INDEX

The impact of a good 1's marginal price change (denoted IMP) on the FGT poverty index $P(k, z; \alpha)$ is as follows:

IMP =
$$\frac{\partial P(k;z;\alpha)}{\partial p_l} * pc$$

= $\widehat{CD}_l^{\alpha+1}(k;z) * pc$

where z is the poverty line, k is the population subgroup for which we wish to assess the impact of the price change, and pc is the percentage price change for good l.

$$IMP = \begin{cases} \frac{\alpha}{\sum\limits_{i=1}^{n} sw_{i}^{k} z^{\alpha}} \sum\limits_{i=1}^{n} sw_{i}^{k} \left(\frac{z-y_{i}}{z}\right)_{+}^{\alpha-1} x_{i}^{1} & \text{if } \alpha \ge 1 \text{ and Normalised} \\ \frac{\alpha}{\sum\limits_{i=1}^{n} sw_{i}^{k}} \sum\limits_{i=1}^{n} sw_{i}^{k} \left(z-y_{i}\right)_{+}^{\alpha-1} x_{i}^{1} & \text{if } \alpha \ge 1 \text{ and Nor Normalised} \\ \frac{E\left[x^{1} \mid y=z\right] * f(z) = \frac{\sum\limits_{i=1}^{n} sw_{i}^{k} K_{h}(z-y_{i}) * x_{i}^{1}}{\sum\limits_{i=1}^{n} sw_{i}^{k}} & \text{if } \alpha = 0 \end{cases}$$

where \mathbf{x}_{i}^{1} is expenditure on commodity l by individual i, and $f_{+} = \max(f, 0)$. Note that if the FGT index is normalized: IMP = $CD^{\alpha+1}(\mathbf{k}; \mathbf{z}) * \mathbf{pc}$

If you wish to compute these statistics, follow these steps:

- From the main menu, choose "Poverty \Rightarrow Impact of price change".
- Choose the different vectors and values of parameters.

Parameters

Z	Poverty line	Compulsory
α	Alpha	Compulsory
pc	Price change in %	Compulsory

Among the buttons, you will find the following commands:

COMPUTE: to compute the impact of the price change. **GRAPH:** to draw the value of the impact as a function of a range of poverty lines z.

IMPACT OF A TAX REFORM ON THE FGT INDICES

A tax reform consists of a variation in the prices of two commodities 1 and 2, under the constraint that it leaves unchanged total government revenue. The effect of this constraint is given by an efficiency parameter, "gamma" (γ), which is the ratio of the marginal cost of public funds (MCPF) from a tax on 2 over the MCPF from a tax on 1.

The impact of this tax reform (denoted IMTR) on the FGT poverty index $P(k; z; \alpha)$ is given by:

IMTR =
$$\left[CD_1^{\alpha+1}(k;z) - \gamma \frac{\overline{X}_1}{\overline{X}_2} CD_2^{\alpha+1}(k;z) \right]^* pc$$

where z is the poverty line, $CD_1^{\alpha+1}(k;z)$ and $CD_2^{\alpha+1}(k;z)$ are the consumption dominance curves for commodities 1 and 2, and pc is the percentage price change of commodity 1. Under the government revenue constraint, the percentage price change of commodity 1 is given by:

$$\gamma \frac{X_1}{\overline{X}_2}$$
 pc.

To compute the impact of the tax reform:

- From the main menu, choose "Poverty \Rightarrow Impact of tax reform".
- Choose the different vectors and values of parameters.

Vectors		
X 1	Commodity 1	Compulsory
X 2	Commodity 2	Compulsory
Parameters		
Z	Poverty line	Compulsory
α	alpha	Compulsory
γ	gamma	Compulsory
pc	1' s % price change	Compulsory

Among the buttons, you will find the following commands:

COMPUTE :	to compute the impact of the tax reform.
CRITICAL γ:	to compute the gamma at which the tax reform will have zero impact on
	poverty. The value of this critical gamma equals: $\overline{CD}_1^{\alpha+1}(k;z)/\overline{CD}_2^{\alpha+1}(k;z)$.
GRAPH z :	to draw the impact of the tax reform as a function of a range of poverty lines
	Ζ.
$\text{GRAPH}\delta_{1,2}\text{:}$	Graph γ ": to draw the impact as a function of a range of MCPF ratios.

LUMP-SUM TARGETING

The per-capita dollar impact of a marginal addition of a constant amount of income to everyone within a group k – called Lump-Sum Targeting (LST) – on the FGT poverty index P(k; z; α), is as follows:

 $LST = \begin{cases} -\alpha P(k, z; \alpha - 1) \text{ if } \alpha \ge 1 \text{ and Not Normalised} \\ -\frac{\alpha}{z} \overline{P}(k, z; \alpha - 1) \text{ if } \alpha \ge 1 \text{ and Normalised} \\ -f(k, z) \text{ if } \alpha = 0 \end{cases}$

where z is the poverty line, k is the population subgroup for which we wish to assess the impact of the income change, and f(k,z) is the density function of the group k at level of income z.

To compute that impact:

- From the main menu, choose "Poverty⇒ Lump-sum Targeting".
- Choose the different vectors and values of parameters.

Parameters	
Z	Poverty line
α	alpha

Compulsory Compulsory

Among the buttons, you will find the following commands:

COMPUTE: to compute the impact of the income change at a particular value of z **GRAPH:** to draw the impact as a function of a range of poverty lines z.

INEQUALITY-NEUTRAL TARGETING

The per-capita dollar impact of a proportional marginal variation of income within a group k, called Inequality Neutral Targeting, on the FGT poverty index $P(k; z; \alpha)$ is as follows:

$$INT = \begin{cases} \alpha \frac{P(k, z; \alpha) - zP(k, z; \alpha - 1)}{\mu(k)} & \text{if } \alpha \ge 1 \text{ and } FGT \text{ is not normalised} \\ \alpha \frac{\overline{P}(k, z; \alpha) - z\overline{P}(k, z; \alpha - 1)}{\mu(k)} & \text{if } \alpha \ge 1 \text{ and } FGT \text{ is normalised} \\ -\frac{zf(k, z)}{\mu(k)} & \text{if } \alpha = 0 \end{cases}$$

where z is the poverty line, k is the population subgroup for which we wish to assess the impact of the income change, and f(k,z) is the density function of the group k at level of income z.

To compute that impact:

- From the main menu, choose "Poverty⇒ Inequality-neutral Targeting ".
- Choose the different vectors and values of parameters.

Parameters

Z	Poverty line	Compulsory
α	alpha	Compulsory

Among the buttons, you will find the following commands:

COMPUTE: to compute the impact of the income change. **GRAPH:** to draw the impact as a function of a range of poverty lines z.

FGT ELASTICITY

Growth

The overall growth elasticity (GREL) of poverty, when growth comes exclusively from growth within a group k (namely, within that group, inequality neutral), is given by:

$$GREL = \begin{cases} \alpha \frac{P(k, z; \alpha) - zP(k, z; \alpha - 1)}{P(z, \alpha)} & \text{if } \alpha \ge 1 \\ \\ -\frac{zf(k, z)}{F(z)} & \text{if } \alpha = 0 \end{cases}$$

where z is the poverty line, k is the population subgroup in which growth takes place, f(z) is the density function at level of income z, and F(z) is the headcount.

Gini

The overall Gini elasticity (GEL) of FGT poverty, is given by:

$$GEL = \begin{cases} \alpha \left(\frac{P(z; \alpha - 1)}{P(z, \alpha)} \left(\frac{\mu}{z} - 1 \right) \right) & \text{if } \alpha \ge 1 \\ \\ \frac{f(z)(\mu - z)}{F(z)} & \text{if } \alpha = 0 \end{cases}$$

To compute that growth elasticity:

- From the main menu, choose "Poverty \Rightarrow Growth Elasticity".
- Choose the different vectors and values of parameters.

Parameters

Z	Poverty line	Compulsory
α	Alpha	Compulsory

Among the buttons, you will find the following commands:

COMPUTE: to compute the growth elasticity.

GRAPH: to draw the impact as a function of a range of poverty lines z.

INCOME-COMPONENT PROPORTIONAL GROWTH

Change per 100% of component

Assume that total income Y is the sum of C income components, with $Y = \sum_{c}^{C} \lambda_{c} y_{c}$ and where c is a factor that multiplies income component y_c and that can be subject to growth. The derivative of the normalized FGT index with respect to λ_c is given by

 $\frac{\left.\frac{\partial \overline{P}(k;z,\alpha)}{\partial \lambda_{c}}\right|_{\lambda_{c}=1,c=1\cdots C} = -CD_{c}(k;z,\alpha)$

where CD_c is the C-dominance curve of component c.

Change per \$ of component

The per-capita dollar impact of growth in the jth component on the normalized FGT index of the k^{th} group is as follows:

$$\frac{\frac{\partial P(k; z, \alpha)}{\partial y^{j}}}{\frac{\partial \mu(k)}{\partial y^{j}}} = -\overline{CD}^{j}(k; z, \alpha)$$

where \overline{CD} is the normalized C-dominance curve of the component j.

Elasticity with respect to component

The j^{th} component elasticity of poverty (as measured by the FGT index) is:

$$-\frac{\mu(k)}{\overline{P}(k;z,\alpha)}\overline{CD}^{j}(k;z,\alpha)$$

 $-\frac{\overline{\overline{P}(k; z, \alpha)}}{\overline{\overline{P}(k; z, \alpha)}}$ CD^{*}(k; z, α) where \overline{CD}^{j} is the normalized C-dominance curve of the component j.

- If you wish to compute this elasticity, choose "Poverty \Rightarrow Component Elasticity". -
- If you wish to compute the above impacts, choose "Poverty \Rightarrow Income-Component _ Proportional Growth", and select one of the three options.
- Choose the different vectors and values of parameters.

Parameters

Z	Poverty line
α	Alpha

Compulsory Compulsory

Among the buttons, you will find the following commands:

COMPUTE: to compute the statistics.

THE IMPACT OF DEMOGRAPHIC CHANGES

This application computes the impact of a change (by a given percentage) in the population proportion of a group t. That change is accompanied by an exactly offsetting change in the population proportion of the other groups.

If the population proportion of group t increases by 100·pc percent, such that $\phi(t) \rightarrow (\phi(t)(1+pc))$, the total estimated impact on poverty is as follows:

$$\Delta \mathbf{P} = \left(\phi(t) * \mathbf{P}(t; z, \alpha) - \sum_{k \neq s}^{K} \frac{\phi(t)}{1 - \phi(t)} * \phi(k) * \mathbf{P}(k; z, \alpha)\right) * \mathbf{p}c$$

If the population proportion of group s increases by an absolute 100 pc percent of the total population, such that $\phi(t) \rightarrow (\phi(t) + pc)$, the total estimated impact on poverty is as follows:

$$\Delta \mathbf{P} = \left(\mathbf{P}(\mathbf{k} = \mathbf{t}; \mathbf{z}, \alpha) - \sum_{k \neq s}^{K} \frac{\phi(k)}{1 - \phi(t)} * \mathbf{P}(k; \mathbf{z}, \alpha) \right) * \mathbf{pc}$$

where $P(k;z;\alpha)$ is the FGT poverty index for subgroup k and $\phi(k)$ is the proportion of the population found in that subgroup.

To perform this estimation:

- From the main menu, choose: "Decomposition \Rightarrow Impact of Demographic Change".
- After setting the configuration, the application appears. Choose the different vectors and parameter values as follows:

Parameters

t	Changed group	Compulsory
Z	Poverty line	Compulsory
α	Alpha	Compulsory
$k_1 - k_2 - \dots$	Group numbers separated by "-"	Compulsory

REMARK: The group numbers separated by the dash "-" should be integer values. For example, we may have two subgroups coded by the integers 1 and 2. In this case, we would write in the field « **Group Numbers** » the values "1-2" before proceeding to the decomposition.