Redistribution

ESTIMATING THE PROGRESSIVITY OF A TAX OR A TRANSFER

Let:

- X be gross income;
- T be a tax;
- B be a transfer.

TR progressivity:

A tax T is TR-progressive if :	$L_X(p) - C_T(p) > 0$	∀p ∈]0,1[
A transfer B is TR-progressive if :	$C_B(p) - L_X(p) > 0$	∀p ∈]0,1[

IR-progressivity:

A tax T is IR-progressive if :	$C_{X-T}(p) - L_X(p) > 0$	$\forall p \in]0,1[$
A transfer B is IR-progressive if :	$C_{X+B}(p) - L_X(p) > 0$	∀p ∈]0,1[

To reach this application:

- From the main menu, choose the item: "Redistribution \Rightarrow Tax or transfer".
- Specify if you wish to estimate the progressivity of a tax or of a transfer.
- Choose the approach to be either TR or IR.
- Choose the different vectors and parameter values.

Parameters

- p: Percentilr
- ρ_{\pm} Rho

Among the buttons, you find the following commands:

S-GINI: to compute as follows:

	TR Approach	IR Approach
Tax	$IC_T(\rho) - I_X(\rho)$	$I_X(\rho) - IC_{X-T}(\rho)$
Transfer	$I_X(\rho) - IC_B(\rho)$	$I_X(\rho) - IC_{X+B}(\rho)$
where $IC(\rho)$ is the S-Gini c	coefficient of concentrati	on and $I(\rho)$ is the S-Gini
index of inequality		

CROSSING: to seek the first intersection of the concentration and Lorenz curves. DAD indicates the co-ordinates of that first intersection and their standard deviation if the option of computing with standard deviation is chosen

DIFERENCE:	to compute as follows:	TR Approach	IR Approach
	Tax	$L_X(p) - C_T(p)$	$C_{X-T}(p) - L_X(p)$
	Transfer	$C_B(p) - L_X(p)$	$C_{X+B}(p) - L_X(p)$
GRAPH:	to compute as follows:	TR Approach	IR Approach
	Tax	$L_X(p) - C_T(p)$	$C_{X-T}(p) - L_X(p)$
	Transfer	$C_B(p) - L_X(p)$	$C_{X+B}(p) - L_X(p)$

RANGE: to specify a range of p for the search of the first intersection between the two curves. The command also allows to specify the range of the horizontal axis in the drawing of a graph

COMPARING THE PROGRESSIVITY OF TWO TAXES OR TRANSFERS

Let:

- X be gross income;
- T1 and T2 be two taxes;
- B1 and B2 be two transfers.

TR progressivity:

T1 is more TR-progressive than T2 if:		
B1 is more TR-progressive than B2 if:	$C_{B1}(p) - C_{B2}(p) > 0$	$\forall p \in]0,1[$

IR-progressivity:

T1 is more IR-progressive than T2 if:	$C_{X-T1}(p) - C_{X-T2}(p) > 0$	$\forall p \in]0,1[$
B1 is more IR-progressive than B2 if:	$C_{X+B1}(p) - C_{X+B2}(p) > 0$	$\forall p \in]0,1[$

To reach this application:

- From the main menu, choose the item: «Redistribution \Rightarrow Transfer-Tax vs Transfer-Tax".
- In front of the indicators "Tax (Transfer)" 1 and 2, specify the two vectors of taxes or transfers.
- Choose the approach to be either TR or IR.
- Choose the different vectors and parameter values.
 <u>Parameters</u>
 p: Percentile

Vectors P

 $\begin{array}{rrrr} T1 & \text{or} & B1_{\pm} & Tax \mbox{ (transfer) 1} \\ T2 & \text{or} & B2_{\pm} & Tax \mbox{ (transfer) 2} \end{array}$

Among the buttons, you find the following commands:

S-GINI:	to compute as follows:		
	-	TR Approach	IR Approach
	Tax	$IC_{T1}(\rho) - IC_{T2}(\rho)$	$IC_{X-T2}(\rho) - IC_{X-T1}(\rho)$
	Transfer	$IC_{B2}(\rho) - IC_{B1}(\rho)$	$IC_{X+B2}(\rho) - IC_{X+B1}(\rho)$
	where $IC(\rho)$ is the S-Gini c	oefficient of concentratio	on and $I(\rho)$ is the S-Gini
	index of inequality		
CROSSING:	to seek the first intersection co-ordinates of that first inte of computing with standard	rsection and their standar	
DIFERENCE:	to compute as follows:		
	-	TR Approach	IR Approach
	Tax	$C_{T2}(p) - C_{T1}(p)$	$C_{X-T1}(p) - C_{X-T2}(p)$
	Transfer	$C_{B1}(p) - C_{B2}(p)$	$C_{X+B1}(p) - C_{X+B2}(p)$
GRAPH:	to compute as follows:		
	Tax	TR Approach	IR Approach
		$\mathbf{C}_{\mathrm{T2}}(\mathbf{p}) - \mathbf{C}_{\mathrm{T1}}(\mathbf{p})$	$C_{X-T1}(p) - C_{X-T2}(p)$
	Transfer	$C_{B1}(p) - C_{B2}(p)$	$C_{X+B1}(p) - C_{X+B2}(p)$
RANGE:	": to specify a range of <i>p</i> f the two curves. The comm horizontal axis in the draw	and also allows to spec	

COMPARING THE PROGRESSIVITY OF A TRANSFER AND OF A TAX

Let :

- X be gross income;
- T be a tax;
- B a transfer.

TR progressivity:

The transfer *B* is more TR-progressive than a $C_B(p) - L_X(p) > L_X(p) - C_T(p)$ $\forall p \in]0,1[$ tax T if:

IR-progressivity:

The transfer B is more IR-progressive than a $C_{X+B}(p) > C_{X-T}(p)$ $\forall p \in [0,1[$ tax T if:

To reach this application:

- From the main menu, choose the item: "Redistribution \Rightarrow Transfer vs Tax".
- Choose the approach to be either TR or IR
- Choose the different vectors and parameter values.
 - **Parameters**

p: Percentile

 ρ : Rho

Vectors

- X: Gross income
- T: Variable of tax
- B: Variable of transfer

Among the buttons, you find the following commands:

S-GINI:	to compute as follows:	
	TR Approach	IR Approach
	$2I_X(\rho) - IC_T(\rho) - IC_B(\rho)$	$IC_{X-T}(\rho) - IC_{X+B}(\rho)$
CROSING:	to seek the first point at which the	progressivity ranking of the tax and
	transfer is reversed. DAD indicates	the co-ordinates of that first reversal
	and their standard deviation if the	option of computing with standard
	deviation is chosen. These co-ordin	ates are:
	TR Approach	IR Approach
	$C_B(p) - L_X(p)$	$C_{X+B}(p)$
DIFERENCE:	to seek the first point at which the	progressivity ranking of the tax and
	transfer is reversed. DAD indicates	the co-ordinates of that first reversal
	and their standard deviation if the	option of computing with standard
	deviation is chosen. These co-ordin	ates are:
	TR Approach	IR Approach
	$C_{T}(p) + C_{B}(p) - 2L_{X}(p)$	$C_{X+B}(p) - C_{X-T}(p)$
GRAPH :	to draw the following curves as a fu	nction of p:
	TR Approach	IR Approach
	$C_{T}(p) + C_{B}(p) - 2L_{X}(p)$	$\mathbf{C}_{\mathbf{X}+\mathbf{B}}(\mathbf{p}) - \mathbf{C}_{\mathbf{X}-\mathbf{T}}(\mathbf{p})$
RANGE:	to specify the range of the horizonta	l axis in the drawing of a graph.

HORIZONTAL INEQUITY

A tax or a transfer T causes reranking (and is therefore horizontally inequitable) if:

Tax
 :

$$C_{X-T}(p) - L_{X-T}(p) > 0$$
 $\forall p \in [0,1[$

 Transfer
 :
 $C_{X+T}(p) - L_{X+T}(p) > 0$
 $\forall p \in [0,1[$

To reach this application:

- From the main menu, choose the item: "Redistribution \Rightarrow Horizontal inequity".
- Specify if you are using a tax or a transfer.
- Choose the different vectors and parameter values.
- **Parameters**

Vectors

T or B. Tax (transfer)

Among the buttons, you find the following commands:

S-GINI:	to compute as follows:	
	Tax	Transfert
	$I_{X-T}(\rho) - IC_{X-T}(\rho)$	$I_{X+B}(\rho) - IC_{X+B}(\rho)$
DIFERENCE:	tocompute	
	Tax	Transfert
	$C_{X-T}(p) - L_{X-T}(p)$	$C_{X+B}(p) - L_{X+B}(p)$
GRAPH:	to draw the following curves as a func	tion of p:
	Tax	Transfert
	$C_{X-T}(p) - L_{X-T}(p)$	$C_{X+B}(p) - L_{X+B}(p)$
RANGE:	to specify the range of the horizontal a	axis in the drawing of a graph.

REDISTRIBUTION

A tax or a transfer T redistributes if:

$$\begin{array}{lll} \mbox{Tax} & : & L_{X-T}(p) - L_X(p) > 0 & & \forall p \in \left] 0, 1 \right[\\ \mbox{Transfer} & : & L_{X+B}(p) - L_X(p) > 0 & & \forall p \in \left] 0, 1 \right[\end{array}$$

To reach this application:

- From the main menu, choose the item: "Redistribution \Rightarrow Redistribution". -
- -
- Specify if you are using a tax or a transfer. Choose the different vectors and parameter values. _ **Parameters**

p: Percentile ρ : Rho **Vectors** T or B. Tax (transfer)

Among the buttons, you find the following commands:

S-GINI:	to compute as follows:	
	Tax	Transfert
	$I_X(\rho) - I_{X-T}(\rho)$	$I_X(\rho) - I_{X+B}(\rho)$
CROSSING:	to seek the first point at which the	curves $L_{X-T}(p)$ and $L_X(p)$, or
	$L_{X+B}(p)$ and $L_{X}(p)$, cross. DAD	indicates the co-ordinates of that first
	crossing and their standard deviation if the option of computing with	
	standard deviation is chosen	
DIFERENCE:	To compute	
	Tax	Transfert
	$L_{X-T}(p) - L_X(p)$	$L_{X+B}(p) - L_X(p)$
GRAPH:	to draw the following curves as a f	function of p:
	Tax	Transfert
	$L_{X-T}(p) - L_X(p)$	$L_{X+B}(p) - L_X(p)$
RANGE:	to specify the range of the horizon	tal axis in the drawing of a graph.

THE COEFFICIENT OF CONCENTRATION

Let a sample contain n joint observations, (y_i, T_i) , on a variable y and a variable T. Let observations be ordered in increasing values of y, in such a way that $y_i \le y_{i+1}$. The S-Gini coefficient of concentration of T for the group k is denoted as $IC_T(k;\rho)$ and defined as:

$$IC_{T}(k;\rho) = 1 - \frac{\sum_{i=1}^{n} \left[\frac{(V_{i})^{\rho} - (V_{i+1})^{\rho}}{[V_{i}]^{\rho}} \right] T_{i}}{\mu_{T}} \text{ where } V_{i} = \sum_{h=i}^{n} w_{h}^{k} \cdot$$

To compute the coefficient of concentration for only one distribution:

- From the main menu, choose the following item: "Redistribution \Rightarrow Coefficient of concentration".
- Choose the different vectors and parameter values. <u>Parameters</u>

ρ_: Rho

Vectors

T: Variable of interest

Y: Ranking variable

Among the buttons, you find the following commands:

COMPUTE: to compute the coefficient of concentration. **GRAPH:** to draw the value of the coefficient as a function of the parameter ρ .

HORIZONTAL INEQUITY: DUCLOS, JALBERT & ARAAR

With this application, we can decompose the difference between gross income X, and net income N inequality as follows:

$$\Delta I(\varepsilon, \rho) = I_X - I_N = \underbrace{I_X - I_N^E}_V - \underbrace{\left(I_N^P - I_N^E\right)}_H - \underbrace{\left(I_N - I_N^P\right)}_R$$

Where :

- V : Vertical inequality component
- H : Horizontal inequality component
- R : Reranking inequality component
- I_N^P : is the coefficient of concentration of N when the ranking variable is X

$$I_N^E = 1 - \frac{\tilde{\xi}(\varepsilon, \rho)}{\mu_N} \quad and \quad \tilde{\xi}(\varepsilon, \rho) = \sum_{p=0.01}^1 \xi(N \mid X = Q(p))/100$$

where $\xi(N \mid X = Q(p))$ is the local Gini-Atkinson social welfare index of net incomes N conditional on gross incomes being at their p-quantiles. To compute this, we use a simulated vector of net incomes generated by using the conditional distribution function F(N|X=Q(p)).

The difference in the cost of inequality can also be decomposed as follows:

$$\Delta C = \underbrace{\mu_F - \mu_N^H}_{V^*} - \underbrace{\left(\mu_N^R - \mu_N^H\right)}_{H^*} - \underbrace{\left(\mu_N - \mu_N^R\right)}_{R^*}$$

where

$$- \mu_F = \frac{1 - I_N}{1 - I_X} \mu_N$$

$$- \mu_N^R = \frac{1 - I_N}{1 - I_N^E} \,\mu_N$$

-
$$\mu_N^H = \gamma * \tilde{\xi}$$
 and $\gamma = \frac{\mu_N^R}{\mu_N}$

To perform this decomposition, follow these steps:

- From the main menu, choose the following item: "Redistribution \Rightarrow HI: Duclos, Jalbert & Araar".
- Choose the different vectors and parameter values.

Parameters	
ρ:	Rho
: 3	epsilon
Vectors	
X :	Gross Income
N :	Net Income

HORIZONTAL INEQUITY: DUCLOS & LAMBERT;

See the application HORIZONTAL INEQUITY: DUCLOS, JALBERT & ARAAR The only difference is the parameter ρ which is then set equal to 1.