Redistribution

Estimating the progressivity of a tax or a transfer

Let:

- X be gross income;
- T be a tax;
- B be a transfer.

TR progressivity:

A tax T is TR-progressive if $\left.\quad \mathrm{L}_{\mathrm{X}}(\mathrm{p})-\mathrm{C}_{\mathrm{T}}(\mathrm{p})>0 \quad \forall \mathrm{p} \in\right] 0,1[$
A transfer B is TR-progressive if : $\left.\quad C_{B}(p)-L_{X}(p)>0 \quad \forall p \in\right] 0,1[$

IR-progressivity:

A tax T is IR-progressive if $\left.\quad \mathrm{C}_{\mathrm{X}-\mathrm{T}}(\mathrm{p})-\mathrm{L}_{\mathrm{X}}(\mathrm{p})>0 \quad \forall \mathrm{p} \in\right] 0,1[$
A transfer B is IR-progressive if : $\left.\quad C_{X+B}(p)-L_{X}(p)>0 \quad \forall p \in\right] 0,1[$

To reach this application:

- From the main menu, choose the item: "Redistribution \Rightarrow Tax or transfer".
- Specify if you wish to estimate the progressivity of a tax or of a transfer.
- Choose the approach to be either TR or IR.
- Choose the different vectors and parameter values.

Parameters

p: Percentilr
ρ : Rho

Among the buttons, you find the following commands:
S-GINI: to compute as follows:

TR Approach
$\mathrm{IC}_{\mathrm{T}}(\rho)-\mathrm{I}_{\mathrm{X}}(\rho)$
$I_{X}(\rho)-I C_{B}(\rho)$

IR Approach
$\mathrm{I}_{\mathrm{X}}(\rho)-\mathrm{IC}_{\mathrm{X}-\mathrm{T}}(\rho)$
$\mathrm{I}_{\mathrm{X}}(\rho)-\mathrm{IC}_{\mathrm{X}+\mathrm{B}}(\rho)$
where $\operatorname{IC}(\rho)$ is the S-Gini coefficient of concentration and $\mathrm{I}(\rho)$ is the S-Gini index of inequality

CROSSI NG: to seek the first intersection of the concentration and Lorenz curves. DAD indicates the co-ordinates of that first intersection and their
standard deviation if the option of computing with standard deviation is chosen

DI FERENCE: to compute as follows:

TR Approach
$L_{X}(p)-C_{T}(p)$
$C_{B}(p)-L_{X}(p)$

IR Approach
$\mathrm{C}_{\mathrm{X}-\mathrm{T}}(\mathrm{p})-\mathrm{L}_{\mathrm{X}}(\mathrm{p})$
$\mathrm{C}_{\mathrm{X}+\mathrm{B}}(\mathrm{p})-\mathrm{L}_{\mathrm{X}}(\mathrm{p})$

GRAPH: to compute as follows:

TR Approach
$L_{X}(p)-C_{T}(p)$
$C_{B}(p)-L_{X}(p)$

IR Approach
$\mathrm{C}_{\mathrm{X}-\mathrm{T}}(\mathrm{p})-\mathrm{L}_{\mathrm{X}}(\mathrm{p})$
$\mathrm{C}_{\mathrm{X}+\mathrm{B}}(\mathrm{p})-\mathrm{L}_{\mathrm{X}}(\mathrm{p})$

RANGE: to specify a range of p for the search of the first intersection between the two curves. The command also allows to specify the range of the horizontal axis in the drawing of a graph

Comparing the progressivity of two taxes or transfers

Let:

- X be gross income;
- T1 and T2 be two taxes;
- B1 and B2 be two transfers.

TR progressivity:
T 1 is more TR-progressive than T 2 if: $\left.\quad \mathrm{C}_{\mathrm{T} 2}(\mathrm{p})-\mathrm{C}_{\mathrm{T} 1}(\mathrm{p})>0 \quad \forall \mathrm{p} \in\right] 0,1[$
B 1 is more TR-progressive than B 2 if: $\left.\quad \mathrm{C}_{\mathrm{B} 1}(\mathrm{p})-\mathrm{C}_{\mathrm{B} 2}(\mathrm{p})>0 \quad \forall \mathrm{p} \in\right] 0,1[$
IR-progressivity:

T1 is more IR-progressive than T2 if:

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{X}-\mathrm{T} 1}(\mathrm{p})-\mathrm{C}_{\mathrm{X}-\mathrm{T} 2}(\mathrm{p})>0 & \forall \mathrm{p} \in] 0,1[\\
\mathrm{C}_{\mathrm{X}+\mathrm{B} 1}(\mathrm{p})-\mathrm{C}_{\mathrm{X}+\mathrm{B} 2}(\mathrm{p})>0 & \forall \mathrm{p} \in] 0,1[
\end{array}
$$

B1 is more IR-progressive than B2 if:

To reach this application:

- From the main menu, choose the item: «Redistribution \Rightarrow Transfer-Tax vs Transfer-Tax".
- In front of the indicators "Tax (Transfer)" 1 and 2, specify the two vectors of taxes or transfers.
- Choose the approach to be either TR or IR.
- Choose the different vectors and parameter values.

Parameters

p: Percentile
Vectors

T1 or B1: Tax (transfer) 1
T2 or B2: Tax (transfer) 2

Among the buttons, you find the following commands:
S-GINI: to compute as follows:
TR Approach
IR Approach
$\begin{array}{cll}\text { Tax } & \mathrm{IC}_{\mathrm{T} 1}(\rho)-\mathrm{IC}_{\mathrm{T} 2}(\rho) & \mathrm{IC}_{\mathrm{X}-\mathrm{T} 2}(\rho)-\mathrm{IC}_{\mathrm{X}-\mathrm{T} 1}(\rho) \\ \text { Transfer } & \mathrm{IC}_{\mathrm{B} 2}(\rho)-\mathrm{IC}_{\mathrm{B} 1}(\rho) & \mathrm{IC}_{\mathrm{X}}(\rho)-\mathrm{IC}_{\mathrm{X}}(\rho)\end{array}$
where $\operatorname{IC}(\rho)$ is the S-Gini coefficient of concentration and $\mathrm{I}(\rho)$ is the S-Gini index of inequality

CROSSI NG: to seek the first intersection of the two concentration curves. DAD indicates the co-ordinates of that first intersection and their standard deviation if the option of computing with standard deviation is chosen

DIFERENCE: to compute as follows:

TR Approach

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{T} 2}(\mathrm{p})-\mathrm{C}_{\mathrm{T} 1}(\mathrm{p}) \\
& \mathrm{C}_{\mathrm{B} 1}(\mathrm{p})-\mathrm{C}_{\mathrm{B} 2}(\mathrm{p})
\end{aligned}
$$

IR Approach
$\mathrm{C}_{\mathrm{X}-\mathrm{T} 1}(\mathrm{p})-\mathrm{C}_{\mathrm{X}-\mathrm{T} 2}(\mathrm{p})$
$\mathrm{C}_{\mathrm{X}+\mathrm{B} 1}(\mathrm{p})-\mathrm{C}_{\mathrm{X}+\mathrm{B} 2}(\mathrm{p})$

GRAPH: to compute as follows:

> Tax
> Transfer

TR Approach

$$
\mathrm{C}_{\mathrm{T} 2}(\mathrm{p})-\mathrm{C}_{\mathrm{T} 1}(\mathrm{p})
$$

IR Approach

$\mathrm{C}_{\mathrm{X}-\mathrm{T} 1}(\mathrm{p})-\mathrm{C}_{\mathrm{X}-\mathrm{T} 2}(\mathrm{p})$

$$
\mathrm{C}_{\mathrm{B} 1}(\mathrm{p})-\mathrm{C}_{\mathrm{B} 2}(\mathrm{p}) \quad \mathrm{C}_{\mathrm{X}+\mathrm{B} 1}(\mathrm{p})-\mathrm{C}_{\mathrm{X}+\mathrm{B} 2}(\mathrm{p})
$$

RANGE: ": to specify a range of p for the search of the first intersection between the two curves. The command also allows to specify the range of the horizontal axis in the drawing of a graph.

COMPARING THE PROGRESSIVITY OF A TRANSFER AND OF A TAX

Let :

- X be gross income;
- T be a tax;
- B a transfer.

TR progressivity:
The transfer B is more TR-progressive than a

$$
\left.\mathrm{C}_{\mathrm{B}}(\mathrm{p})-\mathrm{L}_{\mathrm{X}}(\mathrm{p})>\mathrm{L}_{\mathrm{X}}(\mathrm{p})-\mathrm{C}_{\mathrm{T}}(\mathrm{p}) \quad \forall \mathrm{p} \in\right] 0,1[
$$ tax T if:

IR-progressivity:

The transfer B is more IR-progressive than a tax T if:

$$
\mathrm{C}_{\mathrm{X}+\mathrm{B}}(\mathrm{p})>\mathrm{C}_{\mathrm{X}-\mathrm{T}}(\mathrm{p})
$$

$$
\forall \mathrm{p} \in] 0,1[
$$

To reach this application:

- From the main menu, choose the item: "Redistribution \Rightarrow Transfer vs Tax".
- Choose the approach to be either TR or IR
- Choose the different vectors and parameter values.

Parameters
p: Percentile
ρ : Rho
Vectors
X: Gross income
T: Variable of tax
B : Variable of transfer

Among the buttons, you find the following commands:
S-GINI: to compute as follows:
TR Approach

IR Approach

$$
2 \mathrm{I}_{\mathrm{X}}(\rho)-\mathrm{IC}_{\mathrm{T}}(\rho)-\mathrm{IC}_{\mathrm{B}}(\rho)
$$

$$
\mathrm{IC}_{\mathrm{X}-\mathrm{T}}(\rho)-\mathrm{IC}_{\mathrm{X}+\mathrm{B}}(\rho)
$$

CROSING: to seek the first point at which the progressivity ranking of the tax and transfer is reversed. DAD indicates the co-ordinates of that first reversal and their standard deviation if the option of computing with standard deviation is chosen. These co-ordinates are:

TR Approach
$C_{B}(p)-L_{X}(p)$
IR Approach
$\mathrm{C}_{\mathrm{X}+\mathrm{B}}(\mathrm{p})$

DIFERENCE: to seek the first point at which the progressivity ranking of the tax and transfer is reversed. DAD indicates the co-ordinates of that first reversal and their standard deviation if the option of computing with standard deviation is chosen. These co-ordinates are:

TR Approach

IR Approach

$$
\mathrm{C}_{\mathrm{T}}(\mathrm{p})+\mathrm{C}_{\mathrm{B}}(\mathrm{p})-2 \mathrm{~L}_{\mathrm{X}}(\mathrm{p})
$$

$$
C_{X+B}(p)-C_{X-T}(p)
$$

GRAPH: to draw the following curves as a function of p :
TR Approach

IR Approach

$$
C_{T}(p)+C_{B}(p)-2 L_{X}(p)
$$

$$
C_{X+B}(p)-C_{X-T}(p)
$$

RANGE: to specify the range of the horizontal axis in the drawing of a graph.

Horizontal inequity

A tax or a transfer T causes reranking (and is therefore horizontally inequitable) if:

$$
\begin{array}{llll}
\text { Tax } & : & \mathrm{C}_{\mathrm{X}-\mathrm{T}}(\mathrm{p})-\mathrm{L}_{\mathrm{X}-\mathrm{T}}(\mathrm{p})>0 & \forall \mathrm{p} \in] 0,1[\\
\text { Transfer } & : & \mathrm{C}_{\mathrm{X}+\mathrm{T}}(\mathrm{p})-\mathrm{L}_{\mathrm{X}+\mathrm{T}}(\mathrm{p})>0 & \forall \mathrm{p} \in] 0,1[
\end{array}
$$

To reach this application:

- From the main menu, choose the item: "Redistribution \Rightarrow Horizontal inequity".
- Specify if you are using a tax or a transfer.
- Choose the different vectors and parameter values.

Parameters

p: Percentile
ρ : Rho
Vectors
T or B : Tax (transfer)

Among the buttons, you find the following commands:
S-GINI: to compute as follows:

Tax
$\mathrm{I}_{\mathrm{X}-\mathrm{T}}(\rho)-\mathrm{IC}_{\mathrm{X}-\mathrm{T}}(\rho)$

Transfert
$\mathrm{I}_{\mathrm{X}+\mathrm{B}}(\rho)-\mathrm{IC}_{\mathrm{X}+\mathrm{B}}(\rho)$

DIFERENCE: tocompute
Tax
Transfert
$C_{X-T}(p)-L_{X-T}(p)$
$C_{X+B}(p)-L_{X+B}(p)$
GRAPH: to draw the following curves as a function of p :
Tax
Transfert
$C_{X-T}(p)-L_{X-T}(p)$
$C_{X+B}(p)-L_{X+B}(p)$
RANGE: to specify the range of the horizontal axis in the drawing of a graph.

Redistribution

A tax or a transfer T redistributes if:

$$
\begin{array}{llll}
\text { Tax } & : & \mathrm{L}_{\mathrm{X}-\mathrm{T}}(\mathrm{p})-\mathrm{L}_{\mathrm{X}}(\mathrm{p})>0 & \forall \mathrm{p} \in] 0,1[\\
\text { Transfer } & : & \mathrm{L}_{\mathrm{X}+\mathrm{B}}(\mathrm{p})-\mathrm{L}_{\mathrm{X}}(\mathrm{p})>0 & \forall \mathrm{p} \in] 0,1[
\end{array}
$$

To reach this application:

- From the main menu, choose the item: "Redistribution \Rightarrow Redistribution".
- Specify if you are using a tax or a transfer.
- Choose the different vectors and parameter values. Parameters
p: Percentile
ρ : Rho
Vectors
T or B: Tax (transfer)

Among the buttons, you find the following commands:
S-GINI: to compute as follows:
Tax
Transfert
$I_{X}(\rho)-I_{X-T}(\rho)$
$I_{X}(\rho)-I_{X+B}(\rho)$
CROSSI NG: to seek the first point at which the curves $\mathrm{L}_{\mathrm{X}-\mathrm{T}}(\mathrm{p})$ and $\mathrm{L}_{\mathrm{X}}(\mathrm{p})$, or $\mathrm{L}_{\mathrm{X}+\mathrm{B}}(\mathrm{p})$ and $\mathrm{L}_{\mathrm{X}}(\mathrm{p})$, cross. DAD indicates the co-ordinates of that first crossing and their standard deviation if the option of computing with standard deviation is chosen
DIFERENCE: To compute

Tax
$L_{X-T}(p)-L_{X}(p)$
to draw the following curves as a function of p :

$$
\begin{gathered}
\text { Tax } \\
\mathrm{L}_{\mathrm{X}-\mathrm{T}}(\mathrm{p})-\mathrm{L}_{\mathrm{X}}(\mathrm{p})
\end{gathered}
$$

Transfert
$L_{X+B}(p)-L_{X}(p)$
RANGE: to specify the range of the horizontal axis in the drawing of a graph.

Let a sample contain n joint observations, $\left(y_{i}, T_{i}\right)$, on a variable y and a variable T. Let observations be ordered in increasing values of y, in such a way that $y_{i} \leq y_{i+1}$. The S-Gini coefficient of concentration of T for the group k is denoted as $\mathrm{IC}_{\mathrm{T}}(\mathrm{k} ; \rho)$ and defined as:

$$
\mathrm{IC}_{\mathrm{T}}(\mathrm{k} ; \rho)=1-\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\frac{\left(\mathrm{~V}_{\mathrm{i}}\right)^{\rho}-\left(\mathrm{V}_{\mathrm{i}+1}\right)^{\rho}}{\left[\mathrm{V}_{1}\right]^{\rho}}\right]_{\mathrm{i}}}{\mu_{\mathrm{T}}} \text { where } \mathrm{V}_{\mathrm{i}}=\sum_{\mathrm{h}=\mathrm{i}}^{\mathrm{n}} \mathrm{w}_{\mathrm{h}}^{\mathrm{k}} \text {. }
$$

To compute the coefficient of concentration for only one distribution:

- From the main menu, choose the following item: "Redistribution \Rightarrow Coefficient of concentration".
- Choose the different vectors and parameter values.

Parameters

ρ : Rho
Vectors
T: Variable of interest
y : Ranking variable

Among the buttons, you find the following commands:
COMPUTE: to compute the coefficient of concentration.
GRAPH: to draw the value of the coefficient as a function of the parameter ρ.

Horizontal inequity: Duclos, Jalbert \& AraAr

With this application, we can decompose the difference between gross income X , and net income N inequality as follows:

$$
\Delta I(\varepsilon, \rho)=I_{X}-I_{N}=\underbrace{I_{X}-I_{N}^{E}}_{V}-\underbrace{\left(I_{N}^{P}-I_{N}^{E}\right)}_{H}-\underbrace{\left(I_{N}-I_{N}^{P}\right)}_{R}
$$

Where :

- V : Vertical inequality component
- H : Horizontal inequality component
- R : Reranking inequality component
- $\quad I_{N}^{P}$: is the coefficient of concentration of N when the ranking variable is X

$$
I_{N}^{E}=1-\frac{\tilde{\xi}(\varepsilon, \rho)}{\mu_{N}} \quad \text { and } \quad \tilde{\xi}(\varepsilon, \rho)=\sum_{p=0.01}^{1} \xi(N \mid X=Q(p)) / 100
$$

where $\xi(N \mid X=Q(p))$ is the local Gini-Atkinson social welfare index of net incomes N conditional on gross incomes being at their p-quantiles. To compute this, we use a simulated vector of net incomes generated by using the conditional distribution function $\mathrm{F}(\mathrm{N} \mid \mathrm{X}=\mathrm{Q}(\mathrm{p})$).

The difference in the cost of inequality can also be decomposed as follows:

$$
\Delta C=\underbrace{\mu_{F}-\mu_{N}^{H}}_{V^{*}}-\underbrace{\left(\mu_{N}^{R}-\mu_{N}^{H}\right)}_{H^{*}}-\underbrace{\left(\mu_{N}-\mu_{N}^{R}\right)}_{R^{*}}
$$

where
$-\mu_{F}=\frac{1-I_{N}}{1-I_{X}} \mu_{N}$

- $\mu_{N}^{R}=\frac{1-I_{N}}{1-I_{N}^{E}} \mu_{N}$
- $\mu_{N}^{H}=\gamma^{*} \tilde{\xi}$ and $\gamma=\frac{\mu_{N}^{R}}{\mu_{N}}$

To perform this decomposition, follow these steps:

- From the main menu, choose the following item: "Redistribution \Rightarrow HI: Duclos, Jalbert \& Araar".
- Choose the different vectors and parameter values.

Parameters	
$\varepsilon:$	Rho
$\varepsilon:$	epsilon
$\underline{\text { Vectors }}$	
$\mathrm{X}:$	Gross Income
$\mathrm{N}:$	Net Income

Horizontal inequity: Duclos \& Lambert;

See the application HORIZONTAL inequity: Duclos, Jalbert \& AraAr
The only difference is the parameter ρ which is then set equal to 1 .

