An algorithm for computing the Shapley Value

Abdelkrim Araar and Jean-Yves Duclos

January 12, 2009

1 The Shapley Value

Consider a set N of n players that must divide a given surplus among themselves. The players may form coalitions (these are subsets S of N) that appropriate themselves a part of the surplus and redistribute it between their members. We denote the number of players in subset S by s. The function v(S) is assumed to determine the coalition force, *i.e.*, which surplus can be divided without resorting to an agreement with the outsider players. The question to resolve is: How can the surplus be divided between the n players? According to the Shapley value, the surplus to be allocated to player k, denoted by e_k , is given by

$$e_k = \sum_{\substack{S \subset N\\s \in \{0, n-1\}}} \frac{s!(n-s-1)!}{n!} mv(S,k)$$
(1)

where

$$mv(S,k) = (v(S \cup \{k\}) - v(S)).$$
(2)

The term mv(S, k) is the marginal value that player k generates after his adhesion to a coalition S. Because the order of the players in a coalition S does not affect the contribution of the player k once he has adhered to the coalition, the number of calculations of mv(S, k) needed in (1) is 2^n , since we need to compute mv(S, k) with and without each of the n players.

2 A Shapley algorithm

The algorithm presented below explains how we may estimate the contribution of each player (or factor) in N to v(N). It uses three steps.

Step 1: *Constructing a basic Shapley matrix* **B**

Each row of **B** contains a distinct subset S_l of factors, $l \in \{1, 2, ..., 2^n\}$. The number of columns is n and that of rows is 2^n . Let $\rho_k = 2^{n-k}$.

To illustrate the algorithm, we set n = 5. The matrix **B** then looks like Figure 3. Each line l shows the factors that must be included in S_l for the computation of $v(S_l)$. The matrix **B** is self-explanatory. Its first row $S_1 = \{1\}$ says that v must first be computed only with factor 1; its second row says that v must then be computed with factors 1 and 2; and so on, until all possible subsets of N have been considered. For completeness, Steps **1.a-1.d** also provide a more detailed algorithm.

1.a: Constructing the first column c_1 of matrix **B**.

- Initialize values of the first column to 1 in positions 1 to ρ_1 . For instance, for n = 5, the first column takes the value 1 from level 1 to 16.
- Initialize values of the first column to 2 in $\rho_1 + 1$ to $\rho_1 + \rho_2$.
- Initialize values of the first column to k in $\sum_{j=1}^{k-1} \rho_j + 1$ to $\sum_{j=1}^{k} \rho_j$.
- Continue the initialization until k = n (see values of the first column in Figure 1).

1.b: Constructing the second column c_2

• Copy values of c_1 in c_2 with the following structure:

from colum	in:	to column c_2 in:			
$\rho_1 + 1$	to	$ ho_0$	2	to	$\rho_1 + 1$
$\rho_1 + \rho_2 + 1$	to	$ ho_0$	$\rho_1 + 2$	to	$\rho_1 + \rho_2 + 1$
:	:	:	:	:	:
$\sum_{j=1}^{k} \rho_j + 1$	to	$ ho_0$	$\sum_{j=1}^{k-1} \rho_j + 2$	to	$\sum_{j=1}^{k} \rho_j + 1$

• Continue until k = n (see column c_2 in Figure 1). Note the concordance of the values between the first and the second columns, emphasized in gray shading.

1.c: Constructing the remaining columns

- Use the same mapping of $c_1 \rightarrow c_2$ for $c_2 \rightarrow c_3$.
- Continue until $c_{n-1} \rightarrow c_n$. At the end of this process, a matrix similar to Figure 2 is obtained for n = 5.

1.d: Repositioning values

From the matrix obtained in 1.c, we generate the basic Shapley matrix B, where each value is moved to its respective column at row level. For instance, the value of the fourth column in the sixth row equals 5 and must be moved to the fifth column in that same row. The new matrix is identical to Figure 3 for n = 5.

Step 2: Constructing a Shapley matrix M of coefficients

Denote the number of factors that appear in row l by g_l , and let $\bar{g}_l = n - g_l$. We generate two $2^n \times 1$ vectors Σ and $\bar{\Sigma}$ and set their members respectively to $s_l = \max(0, g_l - 1)$ and $\bar{s}_l = \max(0, \bar{g}_l - 1)$ at position l (see Figure 4). Let the indicator $u_{l,k} = 1$ if factor $k \in S_l$ (the element $b_{l,k}$ of matrix **B** is a non-missing value) and zero otherwise. Let $\bar{u}_{l,k} = u_{l,k} - 1$. Elements of the matrix **M** are defined as

$$m_{l,k} = \frac{u_{l,k}s_l!(n-s_l-1)! + \bar{u}_{l,k}\bar{s}_l!(n-\bar{s}_l-1)!}{n!}.$$
(3)

Note that the matrices \mathbf{B} and \mathbf{M} can be computed without any knowledge of the function v.

Step 3: *Estimating the contributions of factors.*

3.1: Estimating the contribution of factor k according to the level of the introduction of that factor.

Let the $2^n \times 1$ vector $I_{k,z}$ be defined to estimate the average contribution of factor k once it is introduced at level $z \in [1, ..., n]$. Thus, $I_{1,2}$ will serve to estimate the second-level contribution of factor 1, obtained when factor 1 is introduced to compute the function $v(\cdot)$ after another factor has already been included. At position $l \in \{1, 2^n\}$, the element of $I_{k,z}$ equals $m_{l,k}$ if $u_{l,k} = 1$ and $g_l = z$ or if $\bar{u}_{l,k} = 1$ and $\bar{g}_l = z - 1$, and is set to zero otherwise. The contribution of factor k at level z is then equal to $I'_{k,z}\mathbf{V}$.

3.2: Estimating the elements of the Shapley decomposition.

Let the elements v_l of the $1 \times n$ vector $\mathbf{V} = (v_1, ..., v_{2^n})$ be given by function $v(S_l)$, where S_l is row l of matrix **B**. Let the $1 \times n$ vector **E** be given by $\mathbf{E} = \mathbf{V}'\mathbf{M}$. Element e_k of **E** gives the Shapley contribution of factor k to v(N), as defined also in (1).

Level	c_1					c_2
1	1					
2	1					2
3	1					2
4	1					2
5	1					2
6	1					2
7	1					2
8	1					2
9	1					2
10	1					3
11	1					3
12	1					3
13	1					3
14	1					4
15	1					4
16	1					5
17	2					•
18	2					3
19	2					3
20	2					3
21	2					3
22	2					4
23	2					4
24	2					5
25	3					•
26	3					4
27	3					4
28	3					5
29	4					•
30	4					5
31	5					•
32						

Figure 1: Basic Shapley matrix B

-	1	. <u> </u>	a 1.0		
Level	c_1	c_2	c_3	c_4	c_5
1	1				
2	1	2		•	
3	1	2	3	•	
4	1	2	3	4	
5	1	2	3	4	5
6	1	2	3	5	
7	1	2	4	•	
8	1	2	4	5	
9	1	2	5	•	
10	1	3			
11	1	3	4	•	
12	1	3	4	5	
13	1	3	5	•	
14	1	4			
15	1	4	5	•	
16	1	5	•	•	
17	2			•	
18	2	3	•	•	
19	2	3	4	•	
20	2	3	4	5	
21	2	3	5	•	
22	2	4		•	
23	2	4	5	•	
24	2	5		•	
25	3			•	
26	3	4		•	
27	3	4	5	•	
28	3	5		•	
29	4				
30	4	5		•	
31	5		•	•	•
32					

Figure 2: Basic Shapley matrix **B**: Steps 1.2 and 1.3

Level	c_1	c_2	C_3	c_4	c_5
1	1				
2	1	2			
3	1	2	3	•	
4	1	2	3	4	
5	1	2	3	4	5
6	1	2	3		5
7	1	2		4	
8	1	2		4	5
9	1	2			5
10	1		3		
11	1		3	4	
12	1		3	4	5
13	1		3		5
14	1			4	
15	1			4	5
16	1				5
17		2		•	
<i>18</i>		2	3	•	
<i>19</i>		2	3	4	
20		2	3	4	5
21		2	3	•	5
22		2	•	4	
23		2		4	5
24		2		•	5
25		•	3	•	
26		•	3	4	
27			3	4	
28		•	3	•	5
29	•		•	4	•
30	•			4	5
31	•		•	•	5
32		•			•

Figure 3:	Basic Shapley matrix B	: Step 1.4 Figure 4:	Size of coalitions without a	poten
-----------	-------------------------------	----------------------	------------------------------	-------

tial factor

Level	Σ	$ar{\Sigma}$
1	0	3
2	1	2
3	2	1
4	3	0
5	4	0
6	3	0
7	2	1
8	3	0
9	2	1
10	1	2
11	2	1
12	3	0
13	2	1
14	1	2
15	2	1
16	1	2
17	0	3
18	1	2
19	2	1
20	3	0
21	2	1
22	1	2
23	2	1
24	1	2
25	0	3
26	1	2
27	2	1
28	1	2
29	0	3
30	1	2
31	0	3
32	0	4

Figure 5:	Matrix	of co	efficients	\mathbf{M}	(Step 2	2)
-----------	--------	-------	------------	--------------	---------	----

Figure 6: Vector V (Step 3)

						(51	ep 3)
Level	c_1	C2	<i>C</i> 3	c_4	C_5	Level	\mathbf{V}
1	0.2000	-0.0500	-0.0500	-0.0500	-0.0500	1	$v(S_1)$
2	0.0500	0.0500	-0.0333	-0.0333	-0.0333	2	
3	0.0333	0.0333	0.0333	-0.0500	-0.0500	3	•
4	0.0500	0.0500	0.0500	0.0500	-0.2000	4	
5	0.2000	0.2000	0.2000	0.2000	0.2000	5	•
6	0.0500	0.0500	0.0500	-0.2000	0.0500	6	
7	0.0333	0.0333	-0.0500	0.0333	-0.0500	7	
8	0.0500	0.0500	-0.2000	0.0500	0.0500	8	•
9	0.0333	0.0333	-0.0500	-0.0500	0.0333	9	
10	0.0500	-0.0333	0.0500	-0.0333	-0.0333	10	•
11	0.0333	-0.0500	0.0333	0.0333	-0.0500	11	
12	0.0500	-0.2000	0.0500	0.0500	0.0500	12	
13	0.0333	-0.0500	0.0333	-0.0500	0.0333	13	
14	0.0500	-0.0333	-0.0333	0.0500	-0.0333	14	
15	0.0333	-0.0500	-0.0500	0.0333	0.0333	15	
16	0.0500	-0.0333	-0.0333	-0.0333	0.0500	16	
17	-0.0500	0.2000	-0.0500	-0.0500	-0.0500	17	$v(S_l)$
18	-0.0333	0.0500	0.0500	-0.0333	-0.0333	18	•
19	-0.0500	0.0333	0.0333	0.0333	-0.0500	19	
20	-0.2000	0.0500	0.0500	0.0500	0.0500	20	
21	-0.0500	0.0333	0.0333	-0.0500	0.0333	21	
22	-0.0333	0.0500	-0.0333	0.0500	-0.0333	22	
23	-0.0500	0.0333	-0.0500	0.0333	0.0333	23	
24	-0.0333	0.0500	-0.0333	-0.0333	0.0500	24	
25	-0.0500	-0.0500	0.2000	-0.0500	-0.0500	25	
26	-0.0333	-0.0333	0.0500	0.0500	-0.0333	26	
27	-0.0500	-0.0500	0.0333	0.0333	0.0333	27	
28	-0.0333	-0.0333	0.0500	-0.0333	0.0500	28	
29	-0.0500	-0.0500	-0.0500	0.2000	-0.0500	29	
30	-0.0333	-0.0333	-0.0333	0.0500	0.0500	30	
31	-0.0500	-0.0500	-0.0500	-0.0500	0.2000	31	
32	-0.2000	-0.2000	-0.2000	-0.2000	-0.2000	32	$v(S_{2^5})$