
Computation of standard errors in DAD  
 
This section shows how the standard errors of DAD’s estimators of distributive indices and curves are 
computed. The methodology is based on the asymptotic sampling distribution of such indices and curves. 
All of DAD’s estimators are asymptotically normally distributed around their true population value. As 
will be discussed below, we expect this methodology to provide a good approximation to the true 
sampling distribution of DAD’s estimators for relative large samples. 
 
ESTIMATORS OF THE DISTRIBUTIVE INDICES 
 
Estimators of distributive indices (such as poverty and inequality indices) take the following general form: 
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where can be expressed as a continuous function g of the α’s, m is the number of sample observations 
and y

θ
k,j is usually some transform of the living standard of individual or household j. We use Rao’s (1973) 

linearization approach 1 to derive the standard error of these distributive indices. This approach says that 
the sampling variance θ  equals the variance of a linear approximation of : ˆ θ̂
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In matrix format, the variance of θ  is given by ˆ
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with M the covariance matrix of the and V the gradient of α̂ θ :  
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the true derivatives. The covariance matrix is defined as 
 

                                                 
1 Rao,C.R. (1973). Linear Statistical Inference and Its Application. New York: Wiley. 
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The elements of the covariance matrix are again estimated consistently using the sample data, replacing 
for instance  by . It is at the level of the estimation of these covariance elements that the 
full sampling design structure is taken into account. 
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FINITE-SAMPLE PROPERTIES OF ASYMPTOTIC RESULTS 
 
It may be instructive to compare the results of the above asymptotic approach to those of a numerical 
simulation approach like the bootstrap. The bootstrap (BTS) is a method for estimating the sampling 
distribution of an estimator which proceeds by re-sampling repetitively one’s data. For each simulated 
sample, one recalculates the value of this estimator and then uses that BTS distribution to carry out 
statistical inference. In finite samples, neither the asymptotic nor the BTS sampling distribution is 
necessarily superior to the other. In infinite samples, they are usually equivalent. 
 
BOOTSTRAP AND SIMPLE RANDOM SAMPLING  
 
The following steps the BTS approach for a sample drawn using Simple Random Sampling: 
1- Draw with replacement m observations from the initial sample.  
2- Compute the distributive estimator from this new generated sample. 
3- Repeat the first two steps N times. 
4- Compute the variance or the BTS distributions using these N generated estimators.  
 
 
BOOTSTRAP AND COMPLEX SAMPLING DESIGN 
 
The steps here are similar to those above with Simple Random Sampling. Only the first step differs to take 
into account the precise way in which the original sample was drawn. Suppose for example that: 
 
• The data were drawn from two strata, with m1 observations in stratum 1 and m2 observations in 

stratum 2.  
• Observations in every stratum were selected randomly with equal probabilities 
• The first step will then consist in selecting randomly and with the same probability m1 observations 

from stratum1 and (independently) m2 observations from stratum2. Aggregating these two sub 
samples will yield the new generated sample. Repeating this N times will generate the BTS sampling 
distribution. 
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ILLUSTRATIONS 
 
The following table presents the sampling design information of a hypothetical sample of 800 
observations.  
 

Sampling Design Information 
Number of observations 800 
Sum of weights  6200.0 
Number of strata  2 strata in the Sampling Design

CODE  STRATA  PSU  LSU  OBS  P(strata)  FPC (f_h) 
1  1  30  300  300  0,193548  0.0  
2  2  50  500  500  0,806452  0.0  

Total  2  80  800  800  1.0  --  
 
 
The following tables present estimates of the standard errors of some distributive indices using asymptotic 
theory (DAD) and the BTS procedure. 
 

Atkinson Index ( ε =0.5) = 0,09131119 
W Strata Psu Lsu Size 

=psu 
St.err. DAD St.err. BTS 

r     0,00403011 0,00404464 
r r    0,00396117 0,00391402 
r  r   0,00479089 0,00473645 
r r r   0,00414549 0,00412479 
r r r  r 0,00455368 0,00454454 

 
 

FGT ( α =1; z=3000) = 566.47774194 
W Strata Psu Lsu Size 

=psu 
St.err. DAD St.err. BTS 

r     30,15130207 30,31106186 
r r    29,76615787 29,82831383 
r  r   34,90968660 34,49846649 
r r r   31,21606735 31,36449814 
r r r  r 40,20904414 40,10400009 

 
 

Lorenz (p=0.5) =0,26371264 
W Strata Psu Lsu Size 

=psu 
St.err. DAD St.err. BTS 

r     0,00618343 0,00617247 
r r    0,00612036 0,00614563 
r  r   0,00695073 0,00697490 
r r r   0,00632417 0,00636899 
r r r  r 0,00726710 0,00724934 
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Gini (ρ =2) = 0,42403734 
W Strata Psu Lsu Size 

=psu 
St.err. DAD St.err. BTS 

r     0,00801557 0,00809321 
r r    0,00786047 0,00781983 
r  r   0,00964692 0,00964823 
r r r   0,00820847 0,00827642 
r r r  r 0,00949502 0,00946204 

 
Notes: 

W Sampling weight 
r Sampling-design feature is used 
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