Computation of standard errors in DAD

This section shows how the standard errors of DAD’s estimators of distributive indices and curves are
computed. The methodology is based on the asymptotic sampling distribution of such indices and curves.
All of DAD’s estimators are asymptotically normally distributed around their true population value. As
will be discussed below, we expect this methodology to provide a good approximation to the true
sampling distribution of DAD’s estimators for relative large samples.

ESTIMATORS OF THE DISTRIBUTIVE INDICES

Estimators of distributive indices (such as poverty and inequality indices) take the following general form:
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where 0 can be expressed as a continuous function g of the a’s, m is the number of sample observations
and yy; is usually some transform of the living standard of individual or household j. We use Rao’s (1973)
linearization approach * to derive the standard error of these distributive indices. This approach says that

the sampling variance 0 equals the variance of a linear approximation of 0:
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In matrix format, the variance of 0 is given by
Var(é) = Var(V'MV)

with M the covariance matrix of the & and V the gradient of O

£
oo,

.

oo,
00

oot ¢

The gradient elements ﬁﬁ can be estimated consistently using estimates a_faa_Ae of
oo, Oa., o, 0Oa,

the true derivatives. The covariance matrix is defined as

! Rao,C.R. (1973). Linear Statistical Inference and Its Application. New York: Wiley.
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M= Cov(a,,a,) Var(a,) - Cov(a,,o)
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The elements of the covariance matrix are again estimated consistently using the sample data, replacing
for instance Var(a) by Var(Q). It is at the level of the estimation of these covariance elements that the
full sampling design structure is taken into account.

FINITE-SAMPLE PROPERTIES OF ASYMPTOTIC RESULTS

It may be instructive to compare the results of the above asymptotic approach to those of a numerical
simulation approach like the bootstrap. The bootstrap (BTS) is a method for estimating the sampling
distribution of an estimator which proceeds by re-sampling repetitively one’s data. For each simulated
sample, one recalculates the value of this estimator and then uses that BTS distribution to carry out
statistical inference. In finite samples, neither the asymptotic nor the BTS sampling distribution is
necessarily superior to the other. In infinite samples, they are usually equivalent.

BOOTSTRAP AND SIMPLE RANDOM SAMPLING

The following steps the BTS approach for a sample drawn using Simple Random Sampling:
1- Draw with replacement m observations from the initial sample.

2- Compute the distributive estimator from this new generated sample.

3- Repeat the first two steps N times.

4- Compute the variance or the BTS distributions using these N generated estimators.

BOOTSTRAP AND COMPLEX SAMPLING DESIGN

The steps here are similar to those above with Simple Random Sampling. Only the first step differs to take
into account the precise way in which the original sample was drawn. Suppose for example that:

e The data were drawn from two strata, with m1 observations in stratum 1 and m2 observations in
stratum 2.

e Observations in every stratum were selected randomly with equal probabilities

e The first step will then consist in selecting randomly and with the same probability m1 observations
from stratuml and (independently) m2 observations from stratum2. Aggregating these two sub
samples will yield the new generated sample. Repeating this N times will generate the BTS sampling
distribution.



ILLUSTRATIONS

The following table presents the sampling design information of a hypothetical sample of 800
observations.

Sampling Design Information

Number of observations 800
Sum of weights 6200.0
Number of strata 2 strata in the Sampling Design
CODE STRATA PSU LSU OBS P(strata) FPC (f_h)
1 1 30 300 300 0,193548 0.0
2 2 50 500 500 0,806452 0.0
Total 2 80 800 800 1.0 -

The following tables present estimates of the standard errors of some distributive indices using asymptotic

theory (DAD) and the BTS procedure.

Atkinson Index (€=0.5) =0,09131119

W Strata Psu Lsu Size St.err. DAD St.err. BTS
=psu

X 0,00403011 0,00404464

X X 0,00396117 0,00391402

X X 0,00479089 0,00473645

X X X 0,00414549 0,00412479

X X X X 0,00455368 0,00454454

FGT (o.=1; z=3000) = 566.47774194

W Strata Psu Lsu Size St.err. DAD St.err. BTS
=psu

X 30,15130207 30,31106186

X X 29,76615787 29,82831383

X X 34,90968660 34,49846649

X X X 31,21606735 31,36449814

X X X X 40,20904414 40,10400009

Lorenz (p=0.5) =0,26371264

W Strata Psu Lsu Size St.err. DAD St.err. BTS
=psu

X 0,00618343 0,00617247

X X 0,00612036 0,00614563

X X 0,00695073 0,00697490

X X X 0,00632417 0,00636899

X X X X 0,00726710 0,00724934




Gini (p =2) = 0,42403734

W Strata Psu Lsu Size St.err. DAD St.err. BTS
=psu
X 0,00801557 0,00809321
X X 0,00786047 0,00781983
X X 0,00964692 0,00964823
X X X 0,00820847 0,00827642
X X X X 0,00949502 0,00946204
Notes

Sampling weight

Sampling-design feature is used
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